NSF CISE AC Midscale Infrastructure Committee

May 2013 CISE AC meeting

```
P. Barford, U. Wisconsin,
```

F. Berman*, RPI

S. Corbato, U. Utah

J. Fortes*, U. Florida

J. Kurose*, U. Massachusetts (co-chair)

K. Marzullo, NSF

E. Lazowska, U. Washington

B. Maggs, Duke, Akamai (co-chair)

B. Lyles, NSF

J. Mogul, Google

D. Raychaudhuri, Rutgers

J. Rexford*, Princeton

^{*} CISE AC member

Midscale Infrastructure Committee(MIC): charge

- today 1. How should community infrastructure *requirements* be derived?
- Nov. 2012 2. How can CISE articulate a framework for understanding the value of novel infrastructure to transformational research?
- today 3. What are the best models of *funding* community midscale infrastructure?
- Nov. 2012 4. Future research infrastructure: leveraging GENI and beyond

"Midscale (research) infrastructure": larger than MRI, CRI, smaller than MREFC \$4M - \$100M

NSF CISE Mid-scale Infrastructure Committee (MIC) Charge 3: Funding and management models

S. Corbató, Chair (U Utah)

F. Berman (RPI)

J. Fortes (U Florida)

J. Kurose (U Massachusetts)

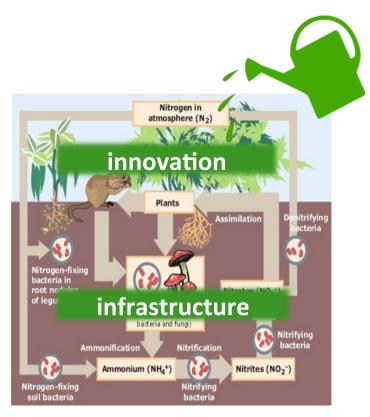
May 17, 2013

Charge to the Committee (#3)

- What are the best models of funding community mid-sized (\$4M-\$100M) infrastructure?
 - Complicated because infrastructure is often best built through community cooperation and federation with a focus on interoperability, rather than as done with MRI (Major Research Instrumentation) and CRI (Computing Research Infrastructure) -- most highly stand-alone projects funded
- How can CISE involve industry in mid-scale infrastructure?

Current Status – What NSF spends on Infrastructure

Directorate/ Office	FY2010 Enacted	RI Funding/ Percentage	FY2012 Request	RI Funding/ Percentage
OPP	451.16	321.43/71%	477.41	338.02/71%
OCI (pre-CISE)	214.28	150.38/70%	236.02	148.06/63%
GEO	889.64	367.79/41%	979.16	364.96/37%
OIA	275.04	93.04/34%	336.25	93.14/28%
MPS	1,351.84	353.73/26%	1,432.73	305.51/21%
BIO	\$714.54	135.45/19%	794.49	132.93/17%
SBE	255.25	43.56/17%	301.13	58.04/19%
CISE (pre-ACI)	618.83	30.60/5%	728.42	30.60/4%
ENG	618.16	32.83/5%	761.42	31.33/4%
OISE	47.83	.10/.2%	58.03	.10/.1%
CISE + ACI			964.44	178.66/19%


Current Status – What CISE – ACI spends on Infrastructure

Project	Total funding (anticipated)	FY11 Funding
PRObE - NSF Parallel Reconfigurable Observational Environment for Data Intensive Super-Computing and High End Computing	\$10.77M	\$1.72M
The Global Environment For Network Innovation (GENI)	\$102.5M	\$11M
Cooperative Association for Internet Data Analysis (CAIDA)	\$14.6M	\$0.69M
Network Emulation Lab (Emulab)	\$16.3M	\$1M
ORBIT: Open-Access Research Testbed for Next- Generation Wireless Networks	\$8.39M	\$0.2M

MIC Recommendations: Increase the effectiveness of mid-size infrastructure investments

Key themes:

- More strongly link
 infrastructure investments
 with science outcomes,
 impact
- Create shared business models with other sectors
- Optimize mid-size infrastructure investments

Credit: Wikipedia

Strongly link infrastructure investments with impact, outcomes

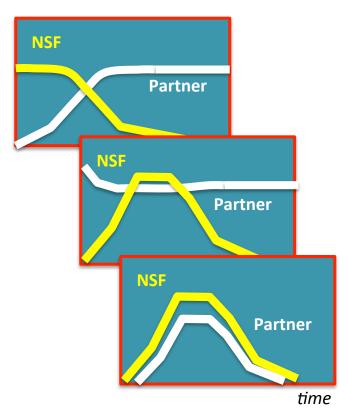
- Recommendation: Build longer-term sustainable facilities at the mid-scale
 - Measure impact through outcomes, science; prioritize users
- Recommendation: Invest in MRI and CRI projects that provide a test bed for infrastructure innovation
 - Focus on both innovation in infrastructure (CISE ACI) and infrastructureenabled innovation (ACI)
- Recommendation: Establish periodic discipline-wide assessment within research areas to drive new facility design and funding priorities
 - Draw on broad community participation and input
 - Include successes and lessons learned from previously supported facilities (Analog: Astronomy & Astrophysics decadal survey)

Create shared business models between NSF and the community

- Recommendation: Develop funding models to incent campus coinvestment in shared-use research facilities
 - Expect longer commitment beyond typical MRI/CRI awards with funding transition as part of the project plan
 - Incorporate realistic operational expenses
 - Expect key stakeholders to participate -- researchers, CIO, VPR, service providers
- * Recommendation: Explore development of community-led nonprofits as vehicles to sustain large mid-sized projects and focus institutional and partner co-investments
 - Large science project management approach with appropriate checks and balances, stakeholder advisory groups, e.g.
 - UCAR / Atmospheric science, AURA / astronomy, IRIS / seismology
 - NSF MREFC, DOE Office of Science

Create shared business models between NSF and other sponsors

Public-private partnerships


- Corporate support
- Foundations

Public-academic partnerships

- Campus co-investment
- Academic consortia

Public-public partnerships

- State co-investment
- Co-sponsorship with other agencies
- Co-sponsorship with other NSF Directorates

different co-investment models

Optimize MI Investments

- Recommendation: Ensure that facilities support a broad spectrum and scale of meritorious research projects
 - Assess based on quantified outcomes
 - Link assessment, innovation, sustainability
- * Recommendation: Explore research-focused cloud services
 - Developed by NSF grantees
 - Provided by commercial organizations
 - FINDING: Current research overhead rules strongly dis-incent large-scale cloud utilization in favor of traditional equipment purchases
- Recommendation: Require viable sustainability plans beyond the duration of NSF funding
 - 3-5 year horizon for "ramped in" funding / cost-sharing / partner investment / in-kind contributions after the expiration of grants

Charge 1

Community infrastructure requirements: CCC white paper process

- S. Corbato
- E. Lazowska
 - B. Maggs
- D. Raychaudhuri

Community Infrastructure Requirements: background

- goal: solicit community input on midscale infrastructure requirements
 - options discussed, not taken: CISE-AC only, decadal studies (e.g., Astronomy), NAS study, NSF-sponsored workshop
- white paper process:
 - solicited through CCC, advertised via CCC blog, mailing lists
 "The Computing Community Consortium is seeking community input to better understand the potential needs and payoff for additional investments in mid-scale infrastructure for computing research ... "
 - 10 white papers, including inputs from many impactful MI activities (Emulab, FutureGrid, GENI, Openflow, Planetlab), experimental systems researchers

White papers:

[Cappos] Cappos (NYU Poly), "Three Computing Infrastructure Needs"

[Chase] Chase, Baldine, (Duke, RENCI / UNC), "CCC Mid-Scale Response"

[Feamster] Feamster (GaTech), Banerjee (Wisconsin), "An Open Observatory for the Internet's Last Mile"

[Fox] Fox, von Laszewski (Indiana), Fortes (Florida), "Mid-Scale Infrastructure Investments for Computing Research: A FutureGrid Perspective"

[Katz] Katz-Bassett (USC), Levin (Maryland), Zariffs (USC), Feamster (GaTech), "The Transit Portal: A Testbed for Internet-scale Routing"

[Kreiger] Krieger, Bestavros, Appavoo (Boston U.), "Enabling an Open Cloud"

[Landweber] Landweber (Wisconsin), Elliott (BBN), "Mid-Scale Infrastructure Investments for Computing Research"

[McKeown] McKeown, Parulkar, Peterson, Shenker, (Open Network Lab), "NSF OpenCloud"

[Ricci] Ricci (Utah), "The Need for Flexible Mid-scale Computing Infrastructure"

[Weiss] Weiss (Evergreen State), Mache (Lewis & Clark), "Mid-scale infrastructure for experimentation in networking and security"

A common vision:

Is there a need for midscale infrastructure? Yes!!

"A nationwide, multi-tiered system (national/regional R&E backbones, data centers, campuses) that is sliced, deeply programmable, virtualized, and federated so that research experiments can run `end to end' across the full suite of infrastructure."

- multi-tiered system (national/regional R&E backbones, data centers, campuses: core/edge networking, computation, clouds
- sliced, virtualized: one (logically shared) physical infrastructure
- programmable: platform for innovation
- federated: organic growth, skin-in-the-game business model

Observations (1):

- accessible to different researcher communities at different levels in architecture
 - laas: infrastructure as a service, down to bare machine
 - PaaS: experimental platforms (e.g., end-end networked cloud platform) as a service
 - SaaS: application software (SaaS)
- [Chase, Kreiger, Landweber, McKeown, Ricci] building bottom up, [Fox] top-down: converging to similar place
 - architectural, control differences
- importance of clear, consistent architecture of testbed design, control, management
- open software: OpenFlow, OpenStack

Observations (2):

- edge networks:
 - WiMax, mostly via existing GENI sites (wireless ubiquity a challenge)
 - measurement of wireless, cable access nets [Feamster]
- limited input from:
 - cyberphysical systems: [Landweber] only
 - security
 - optical (some)
- sustainable business models often addressed:
 - NSF, campus co-investment, working with industry
 - investment timescales: [Landweber, McKeown, Ricci]
- interaction with industry

Observations (3): other visions

- education value noted in several white papers
- a couple of other, more tightly focused whitepapers:
 - edge network: measurement observatory
 - BGP routing

MIC white papers: summary

- valuable, thoughtful input reflecting deep experience, articulating midscale infrastructure value
- multiply-articulated MI vision: nationwide, multitiered system .. sliced, deeply programmable, virtualized, and federated
 - many common views on how to get there, but some differences as well (architecture, control, management)
- next steps: what's valuable to NSF?
 - broadening community input (CPS, security)
 - sustainability, review & evaluation processes
 - control/architecture/management approaches
 - whitepapers ideas out to broad audience?

Charge 2: Articulate framework for understanding infrastructure value

- explaining to community why CISE should fund research infrastructure
 - concrete examples of past success
 - "virtuous" cycle" between facilities and experimental systems research
- qualitative value metrics: enabling research, training systems researchers, better paths to practice
- quantitative metrics:
 - impact metrics
 - use/subscription metrics
 - scale metrics
 - cost metrics

Breaking down the charge

- explaining to community why CISE should fund research infrastructure (RI)
- non-quantitative criteriaquantitative criteria

applied in evaluating specific proposals or ongoing assessment of RI

Explaining why CISE should fund midscale RI

- educate: use concrete examples of past/current RI to illustrate benefits on investment in RI: Planetlab, Emulab, Orbit, Proble, Internet2, GENI and earlier examples (Berkely UNIX)
 - capture surprises, lessons learned, as well as timescale, funding scale
 - most unaware of CISE RI spending relative to other directorates
 - OCI examples less visible to CISE: optical infrastructure, FutureGrid
- stress "virtuous" cycle"* between facilities and experimental systems research
 - building/deploying real system reveals next set of research challenges
 - researchers wrestle with richer space of cometing design goals
 - example: PlanetLab, GENI advances in virtualization trust models, federated management, auto config, measurement

Non-quantitative criteria

- midscale infrastructure: enables research not possible at smaller scale, needing access to underlying infrastructure
 - e.g., structure or efficiency of RI operating at scale beyond a few racks
- train CS systems researchers (academic or industrial R&D careers): exposure to design/operational/measurement challenges
- better paths to practice: results of CS systems research more "ingestible" by industry
- proposals should address how research done on midscale RI
 - could transition to practice
 - could scale up
 - is efficiently, effectively performed by experimenter (usability), particularly for experiments at large scale

Non-quantitative criteria (more)

- effects on national competitiveness: training systems-facile researchers
- Uniqueness: what's new and unique? How is facility different from existing facilities?
- technology transfer vector: software, hardware, best practices?
- technology evolution/change: how will RI cope with technology change?

- Security: RI suitable for security research?
 - do no harm: can RI be used to amplify security threat?
- midscale RI shareable through virtualization/SD*, partitioning, dynamic provisioning?
- broad use: can midscale RI be linked to CPS and/or XSEDE (supercomputing) facilities?

Quantitative criteria

IMPACT METRICS

- # papers published using RI
- # software artifacts based on use of RI
- # patents filed/granted based on work done in RI
- # proposals (funded and unfunded) that include RI use
- # companies started based on work done in RI
- #classes that use the RI

USE/SUBSCRIPTON METRICS

- # users, geographic diversity
- # experiments/projects (e.g., as in Emulab)
- # user- hours for research or teaching (e.g., as in PlanetLab)
- # CPU-hours (e.g., as in Condor)
- # bytes transmitted and/or stored
- # institutions, geographic diversity
- resource utilization

Quantitative criteria (more)

SCALE METRICS

- # CPU cores
- storage capacity (RAM, disk)
- bandwidth and/or switching capacity
- # general (e.g., rack-mount servers) and specialized (e.g., NetFPGAs) devices
- geographic diversity of deployment

COST METRICS

- Initial equipment costs (including deployment, configuration)
- Initial software development associated with tools required to use, operate the RI
- On-going costs associated with equipment upkeep, maintenance
- Day-to-day infrastructure operation costs
- User support costs (including maintaining RI software); user training.
- University overhead and/or support

Quantitative criteria: commentary

- relative importance of criteria will change over time
 - cost, scale metrics important at proposal time
 - impact not significant at start, but critical at renewal or latter assessment times
 - use metric critical throughput, but particularly at start
- metrics valuable for educating community about impacts and costs of existing experimental facilities

Charge 4: Midscale Research Infrastructure

- white papers mirror many earlier MIC RI discussion themes
- virtualization: key RI technology (computation, networking)
 - Critical: control framework for allocation, access, identity, authentication
- converging interests in "cloud"
 - data centers: interesting, missing piece of RI story
- industry: key partner interested in "readily ingestible" research contributions
- importance of OAM, end user involvement
 - quality architecture, human infrastructure
- how "deep," how far does RI go (bare machine, wireless, optical, CPS)?
- how to "rightsize" MI?

MIC next steps

- all charged MIC subcommittees have all reported out
- new/next tasks: what's valuable to NSF?
 - MI project management/review?
 - broadening reach (e.g., CPS)?
 - report documenting findings, recommendations?

Questions and Discussion?

Target Community?

- target community: system researchers, but ...
 - "...support the larger scientific community, especially those forward-looking scientists interested in transitioning their codes from local clusters and GRID-based resources to the commodity cloud, and/or working with Computer Scientists to create new cloud-inspired models for scientific computing."
 - "...create, deploy and evaluate hardware, middleware, software and systems to implement, test and validate new ideas and methods, possibly in the context of new scientific experiments and at-scale important applications."